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Definitions of Chaos

“Chaos” ala Google

@ Typical dynamical systems either have simple trajectories
such as steady state and quasiperiodic orbits, or they
exhibit chaos.

@ Chaos is defined in so many ways that it is quite confusing
for a practitioner to get a reasonable answer to the simple
question

“What is the definition of chaos?”

@ We assert that this is the wrong question to ask



Definitions of Chaos

@ Chaos cannot be
satisfactorily defined
mathematically using a
single definition, not
because chaos is not a
single concept, but
because chaos has many
manifestations in many
different situations.

Buddist parable of the three blind
monks and the elephant

@ In this talk: A variety of manifestations of chaos, with the
conjecture that typically the different forms of chaos are
equivalent.

@ Disclaimer: While this illustrates a universal point, the specific list is incomplete, shaped by our

personal knowledge and experience



Earliest Observations: Transverse Homoclinic Orbits

Al /A

Stable and unstable manifolds of fixed point, Hénon map
(x,y) = (p—x*>—03y,x), 4<x<4,-3<y<3,
p =2.0,2.01725,2.01875, 2.0246

@ Poincaré initially thought all homoclinic orbits coincided
when they intersected.

@ Phragmén pointed out his error.



Transverse Homoclinic Orbits: Poincaré

@ Poincaré, 1892: "“If one seeks to visualize the pattern
formed by these two curves and their infinite number of
intersections, each corresponding to a doubly asymptotic
solution, these intersections form a kind of lattice-work, a
weave, a chain-link network of infinitely fine mesh; each of
the two curves can never cross itself, but it must fold back
on itself in a very complicated way so as to recross all the
chain-links an infinite number of times. One will be struck
by the complexity of this figure, which | am not even
attempting to draw.”

o Movie



Transverse Homoclinic Orbits: From Smale to Present

@ Smale, 1967: Horseshoe maps are contained in transverse
homoclinic orbits, implying chaos.

@ Useful characterization when visualization is difficult but
analysis is tractable, such as delay equations, PDEs.

@ Often gives rise to transient chaos, not attracting

@ Not quantitative



Ueda 1961, Lorenz 1963:
Robustness and Irregular Topology

Ueda-Duffing map: x”(t) + 0.05x(t) + x(t)* = 7.5sin(t),
—22<x<22,-15 <y <26, 27- stroboscopic
Right, stable manifold branches

Lorenz made similar observations



Chaotic Attractors

@ An eyeball measure of fractal topology in an attractor of a
low-dimensional system is an easy method of chaos
detection.

@ This has since been made more precise in the form of
attractor dimension calculations

@ There is no clear definition of strange attractors — rank
one attractors are one special subtype [Wang and Young]

@ In fact, homoclinic points play a role...



Homoclinic Orbits and Merging of Chaotic Attractors

Holmes map: (x,y) — (1.5x + x3 + Ay, x),
—2<x<2,-2<y<2, A=.8(up), .9 (down) .



Chaos in Time Series: Power Spectrum

@ Gollub and Swinney 1975 observed chaotic motion in
Taylor-Couette flow fluid experiments

@ No underlying map
@ Data in the form of a time series

@ Indicators were based on the broad power spectrum for
the time series data

@ This method only considers behavior of orbits, ignoring
nearby trajectories



Exponential Divergence of Trajectories

X +— 2x mod 1

x 1/3  2/3 1/3 23 13 2/3 1/3 2/3
x; 033 .66 032 064 028 056 012 024
Er 0.0033 .0067 0.133 0.0267 0.0533 0.1067 0.2133 0.4267

@ Exponential divergence of trajectories used in definition of
scrambled sets

@ Generalizes to positive stretching along solutions, meaning
positive Lyapunov exponent

@ Lyapunov chaos: Positive probability of a random
trajectory having an expanding direction.



Lyapunov Chaos

@ Common method of checking for chaos for maps and flows
o Gives quantitative measure of degree of chaos

@ Finite time Lyapunov exponents are used for time series
data using delay coordinate embeddings and attractor
reconstruction

@ In cases of noisy data, a full attractor reconstruction may
give less reliable results than a two-dimensional projection.
[Mytowicz, Diwan, Bradley, Computer cache data, 09]

@ Spurious Lyapunov exponents can occur in time series,
with no easy way to distinguish the true exponents [Sauer,
Tempkin, Yorke, 98]

@ Methods such as the 0 — 1 test attempt to avoid
reconstruction [Gottwald, Melbourne]



Periodic Orbit Chaos

@ For map f, let S, be the number of fixed points of fP.
Periodic orbit chaos means positive periodic orbit entropy:

log S
lim sup 82
p—oo P

@ We used periodic orbit chaos to show results on
period-doubling cascades [Sander and Yorke, 09-13]

@ Without theoretical methods, computation cannot be
made rigorous



Positive Topological Entropy

@ Topological entropy measures the mixing of a set. For
N(n, ) the distinguishable orbits, topological entropy:
log N(n,¢)

lim lim sup
e—0 n—o00

@ Positive topological entropy is a concept of chaos useful in
the case of continuous, analytically defined, not
necessarily smooth maps.

@ It is not easily numerically computable, though has been
used for rigorous computational proofs [Day et al. and
Newhouse et al. 08, Frongillo 14]



Comparing to Entropies

@ Metric entropy is related: Topological entropy is an upper
bound on metric entropy

@ In finite dimensional maps and flows topological entropy
for smooth maps is equal to the sum of the positive
Lyapunov exponents when a measure is SRB. Otherwise,
the difference is in terms of the dimension of the invariant
measure [Pesin, Ruelle, Margulis, Ledrappier/Young 85].

@ The relationship is unknown for general infinite
dimensional equations and time series.



Comparing Entropies

@ Periodic orbit chaos is equivalent to positive topological
entropy for Axiom A diffeomorphisms [Bowen, 70] and
Hénon-like maps [Wang and Young]. There can be
superexponential growth of periodic orbits [Kaloshin].
Thus the concepts are in general not equivalent

@ There are zero topological entropy sets which are
scrambled sets.

@ No clear relationship between positive Lyapunov
exponents and decay of time correlations [Slipantschuk,
Bandtlow, Just, 13].



Chaotic Saddles, Robust But Not Stable

Holmes map: (x,y) — (1.5x + x3 + Ay, x),
—2<x<2,-2<y<2,12=0.8,0.95



Fractal Basins

Forced-damped pendulum:
x" +0.2x" +sinx = pcost,
—T<Xx<Tm2<y <4,
p =
1.5725,1.73,2.3225,3.0875,
27-stroboscopic
@ Attractors globally
attracting (3), multiple
basins (1,2,4)
o Fractal basin boundaries
(1.2)
e Eight distinct basins (2)
e Chaotic attractors (3,4)
@ Movie



Two Conjectures

What happens typically? Typical means either a generic or
prevalent set.

Chaos Conjecture: For a typical smooth dynamical system, the
definitions of chaos are equivalent: three types of entropy,
positive Lyapunov exponent, transverse homoclinic orbits,
horseshoes.

Typical Behavior Conjecture: Consider a basic set: maximal
compact invariant transitive set for a map or flow in finite
dimensions. For a typical set of equations, if this set does not
have positive Lyapunov exponent, then the set is a steady
state, periodic orbit, or quasiperiodic set.

Quasiperiodic means topological circle or torus of some
dimension (for maps, multiple tori).



Current work: Quasiperiodicity

@ Fast accurate method for calculating Lyapunov exponent,
rotation number, Fourier coefficients for a quasiperiodic

map.
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Conjugacy in 1D and 2D

Conjugaey Conlugacyz
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Fourier coefficients decay in 1 and 2 dimensions
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Outlook

@ Each definition of chaos comes with its own strengths and
shortcomings — both numerical [Barrio, Borczyk, Breiter
07] and theoretical

@ The concept is too big for a definition — no one
mathematical definition will suffice

@ “Scientists work by concepts rather than definitions ...
Nature abhors a definition try to lock something into too
small a box and | guarantee nature will find an
exception.” -Discover Magazine, in reference to Pluto
and the demise of its planethood.



